

Nikhil Sobanbabu

MS ECE CMU

Curriculum Vitae

✉ (412) 909-8595 | 📩 nikhilsobanbabu@gmail.com | 🏷️ nikhilsobanbabu | 📡 Nike353 | 📡 Nike353 | 📡 nikhilsobanbabu | 📡 Nikhil Sobanbabu

Education

Carnegie Mellon University

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING **GPA: 4.0/4.0**

Pittsburgh, PA

Aug 2024 – May 2026 (Expected)

Coursework: *Robot Learning, Optimal Control, Deep Learning for Computer Vision, Optimization, Planning and Decision Making.*

Indian Institute of Technology Madras

BACHELOR OF TECHNOLOGY IN ELECTRICAL ENGINEERING **GPA: 9.39/10.0**

Chennai, India

Coursework: *Reinforcement Learning, Motion Planning, Linear Dynamical Systems, Nonlinear System Analysis, Field Robotics*

Aug 2020 – May 2024

Research Interests

My research goal is to develop physics-aware learning and control frameworks that enable robots to acquire scalable, contact-rich skills and execute them robustly in the real world. I am particularly interested in **Learning-based control** (Agile Locomotion, Loco-Manipulation and Human Motion tracking), **Real2Sim2Real** (System Identification, Dynamics-Aware sim-to-real adaptation, Active Exploration, reality-gap aware benchmarks) and **Multi-Robot coordination** spanning algorithms and training pipelines.

Honors and Awards

- 2025 **CoRL ORAL**, Top 5.7%
- 2024 **KC Mahindra Graduate Scholarship**, Selected 90/2354
- 2023 **IUSSTF–Viterbi Summer Research Internship Program**, Selected 15/400
- 2020 **All India Rank 286 in JEE Advanced**, 0.2% among 1.2 Million Students
- 2020 **KVPY Fellow SX**, All India Rank of 243.
- 2018 **NTSE Scholar**, State Topper, Stage 1

Publications

PREPRINTS AND UNDER REVIEW

HDMI: Learning Interactive Humanoid Whole-Body Control from Human Videos

Haoyang Weng, Yitang Li, **Nikhil Sobanbabu**, Zihan Wang, Zhengyi Luo, Tairan He, Deva Ramanan, Guanya Shi
Under Review, [\[Paper\]](#)

OGMP: Oracle Guided Multimodal Policies for Agile and Versatile Robot Control

Lokesh Rajan, **Nikhil Sobanbabu**, Quan Nguyen
[arXiv preprint](#), [\[Paper\]](#)

CONFERENCE PROCEEDINGS

SPI-Active: Sampling-Based System Identification with Active Exploration for Legged Robots

Nikhil Sobanbabu, Guanqi He, Tairan He, Yuxiang Yang, Guanya Shi (**Perfect Score-All Strong Accepts**)
Conference on Robot Learning (CoRL 2025) ([Oral](#)), [\[Paper\]](#)

ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills

Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi He, **Nikhil Sobanbabu**, Chaoyi Pan, Zeji Yi, Guannan Qu, Kris Kitani, Jessica Hodgins, Linxi “Jim” Fan, Yuke Zhu, Changliu Liu, Guanya Shi
Robotics: Science and Systems (RSS 2025), [\[Paper\]](#)

Preferred Oracle Guided Multi-Mode Policies for Dynamic Bipedal Loco-Manipulation

Prasanth Ravichandar, Lokesh Rajan, **Nikhil Sobanbabu**, Quan Nguyen
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025), [\[Paper\]](#)

Towards Unstructured MAPF: Multi-Quadruped MAPF Demo

Rishi Veerapaneni*, **Nikhil Sobanbabu***, Guanya Shi, Jiaoyang Li, Maxim Likhachev
International Conference on Automated Planning and Scheduling (ICAPS 2025, Demo Track), [\[Paper\]](#)

Research Experience

Carnegie Mellon University, LeCAR Lab

GRADUATE RESEARCH ASSISTANT, ADVISED BY **PROF. GUANYA SHI**

Pittsburgh, PA

May 2024 – Present

- Designing a two-stage meta-adaptation pipeline combining forward dynamics learning, domain-aware policy training, and few-shot real-world fine-tuning to maintain policy stability and performance in legged robot sim-to-real transfer.
- Developed a parallelizable **sampling-based system identification (SPI-Active)** framework that identifies inertial and actuator parameters of legged robots by reducing open-loop trajectory prediction error enabling precise locomotion.
- Designed an **active exploration policy** maximizing Fisher Information to enable informative data collection for parameter estimation, and deployed agile RL locomotion policies, improving transfer performance by **42–63%** over baselines.

Carnegie Mellon University, Search-Based Planning Lab (SBPL)

GRADUATE RESEARCH ASSISTANT, ADVISED BY PROF. MAXIM LIKHACHEV

Pittsburgh, PA

Jan 2025 – Present

- Working on **multi-agent motion planning and coordination** for teams of quadruped robots using Conflict-Based-Search(CBS) and Temporal Graph(TPG)-based planning.
- Developed a waypoint refinement and synchronization pipeline together with custom-trained locomotion policies to enable coordinated navigation of heterogeneous quadruped robots.
- Developed a modular sim-to-real control stack for Unitree quadrupeds, enabling scalable multi-agent deployment and seamless hot-swapping between high-level and low-level controllers.

University of Southern California, Dynamic Robotics and Control Lab (DRCL)

RESEARCH INTERN, ADVISED BY PROF. QUAN NGUYEN

Los Angeles, CA

May 2023 – Present

- Developed a **closed-loop state reference generator(oracle)** using preview control and a centroidal model that generates dynamically feasible state trajectories guiding an RL policy for the biped Hector toward **parkour-style motions** in MuJoCo.
- Extended the framework with a **hybrid automaton-based oracle** that supports multi-mode, whole-body loco-manipulation behaviors such as soccer dribbling and box manipulation across morphologies(HECTOR v1, Berkeley Humanoid, Unitree G1).
- Currently designing a **data-augmentation pipeline** to directly learns oracles from large scale retargeted human motion data to automate oracle design.

Indian Institute of Technology Madras, Control Engineering Laboratory

UNDERGRADUATE RESEARCH ASSISTANT, ADVISED BY PROF. BHARATH BHIKKAI

Chennai, India

Aug 2022 – May 2024

- Studied single-pursuer, multi-evader **pursuit-evasion-target** games for my undergraduate thesis, deriving optimal reach-avoid strategies using **HJI-PDE** equations for omnidirectional agents and implemented them on LEGO EV3 platform for three agents.
- Formulated a Multi-agent RL framework using **MAPPO** on a custom **petting-zoo** environment and compared the convergence with nash-equilibrium of analytical solution on a 1v1 game.

Industry Experience

DiFACTO Robotics and Automation

ROBOTICS INTERN

Bengaluru, India

Jun 2024 – Aug 2024

- Developed a natural-feature navigation and recovery framework for in-house AMRs using ROS NavStack
- Optimized **Fanuc R-1000iA/80H** palletization trajectories, reducing cycle time by **23.6%**.

Skills

Programming	C/C++, Python, Julia, Bash, Git
Frameworks & Tools	PyTorch, TensorFlow, CasADi, NumPy, Pandas, scikit-learn, Docker, GitHub
Simulation & Robotics	Isaac Gym/Sim, MuJoCo, ROS1/2, Gazebo, MoveIt, MATLAB/Simulink
Domains	Reinforcement Learning, Optimal & Adaptive Control, Sim2Real Transfer
Hardware & Electronics	Embedded Systems (STM32, Arduino, Jetson), Altium PCB Design, Sensors & Actuators Integration

Academic Services

Reviewer ICRA, IROS, RAL, CoRL 2025, ICRA 2026

Teaching Assistant CMU 18-460 *Feedback Control Systems*, CMU 18-202 *Mathematical Foundations for Electrical Engineers*

Teaching Assistant EE3004 *Control Engineering*

Media Coverage

IEEE Spectrum – Video Friday(Evan Ackerman)

OGMP: Oracle Guided Multimodal Policies for Agile and Versatile Robot Control [Link]

Projects and Competitions

Adaptive Force Control for Learned Centroidal Controller

COURSE PROJECT (OPTIMAL CONTROL AND RL) [GITHUB]

Carnegie Mellon University

Spring 2025

- Designed a control framework integrating **L1-Adaptive force control** with a **Hierarchical RL and QP-based** low-level controller.
- Achieved **2.5-3x** longer traversal distances in a continuous jumping task via adaptive sim-to-sim transfer enabling real-time payload adaptation for quadruped robots.

Terrain Traversability Analysis with Image Dehazing

COURSE PROJECT(DEEP LEARNING FOR CV) [REPORT]

Carnegie Mellon University

Fall 2024

- Integrated a Generative Adversarial Network (GAN)-based dehazing model with a terrain segmentation (GANav) framework improving mIoU by **61.29%**.
- Analysed and compared Physics and Learning based dehazing techniques as an input to the GANav framework.

Motion Imitation with DIAL-MPC

COURSE PROJECT(ROBOT LEARNING)[REPORT]

Carnegie Mellon University

Fall 2024

- Generated reference trajectories for Unitree Go2 using motion retargeting from motion capture data of dogs.
- Implemented a Full-order Sampling based MPC framework enhancing trajectory tracking performance by 22.73%.

Multi-Agent Trajectory Tracking for Crazyflie Quadrotors

UNDERGRADUATE RESEARCH PROJECT [REPORT]

IIT Madras

2023

- Worked on **autonomous** control of multiple **crazyflie quadrotors** using custom-built **ROS** packages with modified **Mellinger and PID** controllers under the guidance of Dr.Bharath Bikkaji.
- Created **ROS** meta packages for **safe landing** of the **quadrotors** in the event of loss of communication.

Team Anveshak

TEAM LEAD

IIT Madras

2021 – 2023

- Designed custom **PCBs** utilizing **MPC2515 CAN** controller to facilitate precise control of the actuators in the manipulator of the rover via **Nvidia's Jetson Xavier**.
- Engineered an energy-efficient power distribution and monitoring framework, reducing rover energy consumption to **86%**. Enabled remote monitoring of electrical parameters from a distant base station, enhancing rover performance.
- Led the team of 40+ students and secured a **global 6th** place at the **Anatolian Rover Challenge in Turkey, 2022**.

Swing-up and Stabilization of an Inverted Pendulum

COURSE PROJECT (NONLINEAR SYSTEM ANALYSIS)

IIT Madras

Spring 2023

- Developed a controller for the **swing-up and stabilization** of a linear inverted pendulum.
- Implemented swing-up control using **energy-based Lyapunov functions** and stabilized via **pole placement** after swing-up.
- Analyzed robustness and performance of a **Sliding Mode Controller** for stability improvement.

Sampling-Based Motion Planning for a Mobile Manipulator

COURSE PROJECT (MOTION PLANNING)

IIT Madras

Fall 2022

- Implemented sampling-based planners (**RRT*** and **Bi-Directional RRT**) for the KUKA mobile manipulator.
- Integrated motion planning with **A*** and **Traveling Salesman** algorithms for optimal pick-and-place tasks in Gazebo.
- Validated task completion efficiency through simulations with dynamic obstacle configurations.

KrishiBot – Autonomous Agriculture Robot

COMPETITION PROJECT (EYRC 2022–23)

IIT Madras

Oct 2022 – Mar 2023

- Implemented a **wall-following navigation algorithm** using laser scan feedback and a PID controller for warehouse traversal.
- Integrated **color and centroid detection** to identify bell peppers using Intel RealSense depth camera.
- Executed a complete **pick-and-place pipeline** in ROS MoveIt for crop harvesting automation.