20

25

30

35

40

Towards Unstructured MAPF: Multi-Quadruped MAPF Demo

Rishi Veerapaneni®, Nikhil Sobanbabu®, Guanya Shi, Jiaoyang Li, Maxim Likhachev

Carnegie Mellon University
{rveerapa, nsobanba, guanyas, jiaoyanl, mlikhach} @andrew.cmu.edu

Abstract

Multi-Agent Path Finding (MAPF) in its most broad per-
spective focuses on finding collision free paths for gen-
eral teams of agents in a shared environment. Theoretically,
MAPF methods could solve a variety of multi-agent prob-
lems. However, MAPF research primarily focuses on simpli-
fied warehouse domains, i.e., gridworld with discrete spaces,
discrete timesteps, and point-mass agents without kinematic
constraints. Thus, the perception of MAPF is tied closely
to gridworld and its assumptions, which limits its attrac-
tiveness to more broad domains. However, there are several
ways to extend MAPF methods past these classical assump-
tions. To this end, our demo shows how MAPF techniques
can be used to plan for a team of quadrupeds. Our system
plans in continuous space, in continuous time, with real-
istic footprints, and incorporates dynamics constraints. See
https://youtu.be/TLEVkN4ywgU for additional details.

1 Introduction

Multi-Agent Path Finding (MAPF) focuses on finding
collision-free paths for a team of agents in a shared
workspace. The crown applications of MAPF are automated
warehouse robotic systems which contain 100s-1000s of
planar robots that need to transport items between different
locations. Modern MAPF methods are extremely capable
and can plan for 1000s of these agents in seconds. However,
MAPF methods require many simplifying assumptions. In
particular, most MAPF methods require a discretized world,
discretized timesteps, point-mass agents, and no kinematic
constraints. Thus, the perception of MAPF is that it is con-
strained to warehouses and not applicable to other complex
robotics systems with fewer assumptions. To that end, our
demo shows how to use MAPF for a team of quadrupeds. In
particular, we plan in continuous space, continuous time, re-
alistic footprints, and incorporate kinematic constraints for a
team of heterogeneous quadrupeds. We note that we are not
the first to relax these assumptions and that prior work, in
particular dB-CBS (Moldagalieva et al. 2024), does so. Our
demo seeks to emphasize these advancements with a realis-
tic demo with complex agents.

2 Related Works

Classic MAPF Formulation Multi-Agent Path Finding
(MAPF) is the problem of finding collision-free paths for a

“These authors contributed equally.

group of IV agents, that takes each agent ¢ from its start loca-

tion 55" to its goal location s In traditional 2D MAPF,
the environment is discretized into grid cells, and time is
broken down into discrete timesteps. Agents are allowed to
move in any cardinal direction or wait in the same cell. A
valid solution is a set of agent paths without vertex colli-
sions (two agents at the same location at the same timestep)
and edge collisions (two agents swapping locations). Thus,
according to this construction, classical MAPF has the fol-
lowing restrictions:(1) Discretized locations, (2) Discretized
timesteps, (3) Point-mass agents, and (4) No dynamics or
kinematic constraints.

Variations on MAPF Assumptions There are several
works that reduce the above assumptions. Large Agents
MAPF (LA-MAPF) specifically focuses on MAPF with
agents with non-point-mass footprints (Li et al. 2019). LA-
MAPF specifically introduces two different constraints in
the context of Conflict-Based Search (Sharon et al. 2015).
Several works have focused on MAPF with continuous
time with non-point-mass footprints. Continuous time CBS
(CCBS) (Andreychuk et al. 2019) used Safe-Interval Path
Planning (SIPP) (Phillips and Likhachev 2011) to plan for
disk agents in continuous time on a 2* connected grid.
Discontinuity-Bounded CBS (dB-CBS) (Moldagalieva et al.
2024) uses CBS with a combination of heuristic search
and optimization solvers to plan for a set of heterogeneous
agents in continuous space, time, different footprints, and
kinematic constraints.

Handling Execution Uncertainty Even after finding a
collision-free MAPF solution, how do we actually execute
these plans given that agents are not perfectly modeled and
can have execution imperfections? In particular, there are
two types of imperfections: (1) Spatial uncertainty and (2)
Temporal uncertainty.

Dealing with spatial uncertainty is relatively simple if
the agent’s controller has bounded error; we can inflate the
agent’s footprint during MAPF planning to incorporate the
bounded error. We can test an agent’s controller ahead of
time to measure its error. We choose to handle temporal un-
certainty by using a Temporal Planning Graph (TPG) that
encodes temporal dependencies between agents (Honig et al.
2016). A TPG is more flexible as it does not require modify-
ing the MAPF solver/solution but instead requires agents to
be able to communicate to each other during execution.

45

50

55

60

65

70

75

80

85



90

95

100

110

115

120

125

130

Abstracting Low Level Controller

MAPF Solver

— 7
"Real" Execution + TPG

Figure 1: We visualize the pipeline for MAPF with quadrupeds (see Section 3).

3 MAPF for Multiple Quadrupeds

This section describes the technical details of our demo for
planning and executing for multiple quadrupeds in a shared
planar environment.

Modeling the Quadruped We model the quadruped as
a rectangle given the existence of robust Reinforcement
Learning (RL) policy training pipelines for velocity tracking
tasks in legged robots. This low-level RL policy enables the
quadruped to track a 2D twist command consisting of lin-
ear translational velocity (v, vy), and angular velocity (w.).
Further, we incorporate heterogeneity in our framework with
three different quadrupeds: Unitree Go2, Anybotics Anymal
C, and Boston Dynamics’ Spot. However, we noticed that
the pre-trained locomotion policies for the Unitree Go2 and
Anymal C were poor in tracking high velocities and high
acceleration trajectories. Hence, we trained custom policies
for these two robots with extra regularization rewards and
higher velocity command ranges.

Given a sufficiently performant velocity controller, we
can abstract away the quadrupeds 12 DoF leg joints (4 legs
x 3 DoF per joints) but instead only represent the quadruped
with a position (z,y) and a heading 6. A quadruped addi-
tionally has its own kinematic dynamics/constraints (e.g.,
rotating takes longer than moving forward) based on the
velocity controller. Finally, we simplify the footprint of
the quadruped to be a rectangle. Given the (z,y,0) state
and rectangular footprint per quadruped, the MAPF planner
finds a set of collision-free paths per quadruped, where each
path is a sequence of (z,y, §) waypoints.

MAPF Solver Given a set of start (, y, #) positions, goal
(z,y,0) positions, and rectangular footprints, the MAPF
solver need to find collision-free (x,y,6) paths while
satisfying the agent’s kinematic/dynamic constraints. We
use Conflict-Based Search (CBS) with a few modifica-
tions for practicality at the expense of optimality/bounded-
suboptimality or completeness (Sharon et al. 2015). First,
since we want to plan in continuous space and time, we use
a Rapidly-Exploring Random Tree (RRT) single-agent plan-
ner (LaValle and Kuffner 2001). The RRT planner works in
continuous space and time while avoiding obstacles, con-
straints, and incorporating the dynamic constraints. Second,
since our agents have large footprints, we do not have edge
conflicts but only deal with vertex conflicts. Since we work
with continuous space and time, we detect collisions via a
finely discretized collision checker. Third, given a detected

collision between two rectangles aq, as at (zf,yt,6%) and
(xt, 44, 0) respectively, we apply a simplified vertex con-
straint. We detect a collision point in the overlap between the
agents and apply a constraint that each agent needs to avoid
overlapping with the collision point for a time range. We
note that using this time range constraint means that CBS
is not complete. Finally, since we are mainly interested in
finding feasible paths as opposed to finding minimal time
paths, we use greedy-CBS which sorts the high-level queue
via (#num conflicts, sum of time) (Barer et al. 2014).

Executing the MAPF solution Given a collision-free set
of paths, we execute them in Isaac Sim using our trained
velocity tracking RL policies. The MAPF solution is first
transformed into a TPG, which encodes the action depen-
dencies across agents. Each quadruped in Isaac Sim follows
this TPG, executing actions in sequence to reach the desig-
nated waypoints. To ensure smooth transitions between way-
points, the trajectory is refined using a Bézier spline. At each
timestep, a proportional controller in the body frame com-
putes the velocity commands for the RL policy based on the
robot’s current position and the next intermediate waypoint
within the spline.

Results Figure 1 illustrates the planning and execution
process of a four-agent system navigating from their start po-
sitions to the corresponding goal locations without any colli-
sions. We further evaluated our pipeline on maps with 5-, 8-,
and 12-agent systems. The average execution times observed
were 113.324+4.79,198.60+£12.44, and 312.86+£23.76 sec-
onds, respectively. These results were obtained over three in-
dependent trials for each configuration, with each trial using
randomized, heterogeneous agents. This shows how MAPF
can be used to plan relatively long horizon trajectories.

Future Goals This system is in a developmental state cur-
rently. Our target by September (so before the ICAPS con-
ference) is to have a GitHub repository that cleanly allows
researchers to focus on different components. In particular,
we would like to make it a type of MAPF benchmark that
MAPF researchers can use to develop and evaluate new al-
gorithms. We are additionally working on deploying this on
a real-world system. Overall, our goal with this demo is to
show how MAPF research can be used for more complex
robot systems, and potentially serve as a tool for future re-
search.

135

140

145

150

155

160

165

170



175

180

185

190

195

200

205

References

Andreychuk, A.; Yakovlev, K.; Atzmon, D.; and Stern, R.
2019. Multi-Agent Pathfinding with Continuous Time. In
Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19, 39-45.

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Seventh Annual
Symposium on Combinatorial Search.

Honig, W.; Kumar, T. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-agent path finding with
kinematic constraints. In Twenty-Sixth International Confer-
ence on Automated Planning and Scheduling.

LaValle, S. M.; and Kuffner, J. J. 2001. Rapidly-exploring
random trees: Progress and prospects. Algorithmic and com-
putational robotics, 303-307.

Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. K. S;
and Koenig, S. 2019. Multi-Agent Path Finding for Large
Agents. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01): 7627-7634.

Moldagalieva, A.; Ortiz-Haro, J.; Toussaint, M.; and Honig,
W. 2024. db-CBS: Discontinuity-bounded conflict-based
search for multi-robot kinodynamic motion planning. In
2024 IEEE International Conference on Robotics and Au-
tomation (ICRA), 14569-14575. IEEE.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In 2011 IEEE In-
ternational Conference on Robotics and Automation, 5628—
5635.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40-66.



