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Abstract—We investigate the limitations of the CAJUN frame-
work, a hierarchical learning and control architecture for legged
robots that enables continuous jumping with adaptive jump dis-
tances. CAJUN employs reinforcement learning (RL) to generate
a centroidal policy that determines high-level motion parameters
such as gait timing, base velocity, and swing foot position. These
parameters are then processed by a low-level controller that
computes joint-level motor commands using a Quadratic Pro-
gram (QP). While CAJUN performs well in nominal simulation
settings, we observe significant performance degradation under
sim-to-sim transfer with added payloads, indicating a lack of
robustness to model uncertainty. To address this, we introduce a
modified low-level control strategy that incorporates £, adaptive
control within the QP formulation. Our approach improves
adaptability to dynamic variations and enhances robustness in
transfer scenarios, enhancing resilience to model uncertainties
during deployment. The codebase for this work can be found in
Github:RL-AFQP

Index Terms—Jumping, Legged Locomotion, Adaptive Control

I. INTRODUCTION

Legged robots possess a unique ability to traverse complex
and unstructured environments. Unlike wheeled or tracked
systems, they can adaptively modulate foot placement and
body posture to negotiate steep inclines, irregular surfaces,
and constrained spaces [2], [21]]. These features make them
particularly well-suited for real-world tasks such as disaster
response, firefighting, and search-and-rescue missions [18],
[19]. However, deploying legged robots in such high-stakes
scenarios requires not only agility and versatility, but also
robustness to model inaccuracies and unpredictable external
disturbances.

Conventional locomotion strategies typically rely on con-
tinuous walking gaits, which inherently restrict the robot’s
reach to within a single body length of its current stance [6].
This limits traversal over large gaps or disconnected footholds,
such as stepping stones. Jumping offers a compelling solution,
allowing robots to bridge larger distances and expand their op-
erational workspace. However, designing reliable and adaptive
controllers for continuous jumping remains a core challenge.
While optimization-based methods offer precision, they often
require computationally expensive trajectory planning and are
limited by simplified online tracking controllers [6], [7]. On
the other hand, learning-based approaches provide greater
adaptability but are frequently hampered by complex reward
shaping and poor transferability from simulation to the real
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world—particularly for underactuated, high-dynamic tasks like
jumping [12].

To overcome these challenges, the CAJun framework []1]
introduces a hierarchical control architecture that unites the
strengths of optimization and learning. A high-level reinforce-
ment learning (RL) policy predicts centroidal targets—such
as desired base velocities, gait parameters, and footstep lo-
cations—while a low-level quadratic program (QP) controller
tracks these targets at 500 Hz by computing joint torques.
This architecture enables continuous, adaptive jumping and
has been validated on the Unitree Gol robot, which can clear
70 cm gaps, outperforming prior methods by over 40% [12].

Although jumping expands the terrain capabilities of legged
robots, robustness to uncertainty remains a critical barrier to
reliable real-world deployment. Most existing control methods
assume access to accurate dynamics models and degrade
significantly in the presence of model mismatch or distur-
bances. The L1 adaptive control framework [15] addresses
this limitation by introducing an adaptive nature to address the
model uncertainty. Its novelty is the decoupling of robustness
and fast adaptation through a low-pass-filtered adaptation law,
ensuring guaranteed stability and smooth transient behavior.

The L1 adaptive controller has been validated in both
simulation and real-world experiments on the Al quadruped
platform [[15]]. It has demonstrated impressive robustness to
unknown and time-varying payloads - successfully handling
loads up to 92% of the robot’s weight—where traditional non-
adaptive baselines fail [20].

Together, the CAJun and L1 frameworks represent com-
plementary advances in legged locomotion. CAJun improves
reachability and agility through hierarchical learning-based
jumping, while L1 improves reliability under uncertainty
through robust force-based adaptation. This paper benchmarks
the two frameworks in simulated and real-world scenarios and
proposes hybrid approaches, such as integrating L1 adaptation
into learned policies, to advance robust, agile and adaptable
locomotion.

II. RELATED WORKS

Optimization-Based Control for Jumping. Optimization-
based controllers have long been a cornerstone in legged lo-
comotion, enabling behaviors ranging from periodic bounding
and pronking to dynamic, high-amplitude leaps [7], [8]]. These
methods leverage high-frequency control loops to generate
robust motions under significant perturbations, but often suffer
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from computational bottlenecks that restrict online planning
to short horizons and low-displacement jumps [9]-[11]. To
address this, several works pre-compute reference trajectories
offline via trajectory optimization (TO), extending jump height
and distance significantly [[6]. However, generalizing beyond
these handcrafted trajectories to more adaptive, reactive behav-
iors remains a challenge. Notably, Park et al. [13] integrated a
multi-level planning scheme to perform continuous bounding
over hurdles with fixed gaits. In contrast, the CAJun frame-
work introduces a more flexible formulation where the policy
simultaneously modulates gait timing, base pose, and swing
foot trajectory, allowing it to generalize across terrains and
commands.

Hierarchical RL for Legged Locomotion. Recent ad-
vancements in legged robot control have combined RL with
model-based lower-level controllers in hierarchical frame-
works [14]. These systems typically employ a high-level
RL policy that outputs gait timings, CoM trajectories, or
footstep plans for a lower-level optimizer or controller to
track. However, the need to solve optimization problems at
every control step often results in prohibitively slow training
times. CAJun [1]] addresses this bottleneck by introducing a
closed-form solution to the foot force optimization problem,
significantly reducing per-step computation without sacrificing
physical consistency. As a result, CAJun achieves orders-
of-magnitude faster training—completing in just 20 minutes
on a GPU—while maintaining task versatility and high-
performance jumping.

Adaptive Control Adaptive control allows a controller to
adjust its parameters online to handle model uncertainties
[22], and has been widely used in robotic arms, mobile
platforms, and quadrupeds [23]]. Classical Model Reference
Adaptive Control (MRAC) frameworks were developed for
linear systems with parametric uncertainty [24], but they do
not offer guarantees on transient response. To overcome this,
L1 adaptive control introduces a low-pass filter in the adapta-
tion loop, enabling separation of adaptation and robustness
and offering fast, stable transients [25]. Recent work has
combined £; control with Bayesian learning to enable safe,
online adaptation [26].

In legged robotics, adaptive control has been used for
estimating the center of mass [27] and stabilizing locomotion
using nonlinear control reference models like Control Lya-
punov Functions (CLFs) [28]]. These methods were validated
on bipedal robots for walking and running, but rely on Hybrid
Zero Dynamics [29] with joint-level trajectory tracking. Other
works, such as [[30]], combine CLF-based adaptive constraints
with MPC, though this increases computational cost due to
added constraints.

III. METHODOLOGY

Figure [I] shows the overall control architecture. We be-
gin with some preliminaries on the centroidal model of the
quadruped, then present CAJun’s Unconstrained QP solver,
describe the £, augmentation (with premise, continuous-time
foundation, and discrete implementation) to the force-based
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Fig. 1: Overall control architecture: High-Level Centroidal
Policy feeding into the low-level QP solver (with £, adap-
tation).

QP formulation, and finally specify some details of the cen-
troidal policy of CAJun
A. Preliminaries: Centroidal dynamics

Let

r=(p,0) €R® | i=(v,w) R

be the base pose and velocity of the robot. Under rigid-body
assumptions, stack the four foot forces into

f=1f:---; fa] ER®,

and write the discrete-time centroidal dynamics:
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is the 6 x 6 inverse inertia matrix (with mass m and inertia
tensor I), dj, € RS is an unknown wrench disturbance, and

Tyl — Tk
At
is the desired discrete acceleration.

LTdes =

B. CAJun’s Fast Unconstrained GRF Solver

During reinforcement-learning in CAJun [1]], a closed-form

GRF is computed without constraints. Define the
block-replicated inverse inertia
A=[M.000] | [0 M 00
6x12 6x12
[ 00 0] [ 000 2]
6x12 6x12

Given target 7405 and gravity wrench g € R®, CAJun solves

fo=arg min, 3Af — (9 +daa) b + FIFIE, D



with diagonal weights U € RO6*6 VvV ¢ RIZX12 [t

closed-form is
fo=(ATUA+ V) ATU (g 4 #aes) -

To enforce unilateral contact and friction limits, each foot 7 is
post-processed:

fi,z — Clip(fb,i,za fmim fmax)v
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C. L1 Adaptive Control Augmentation

a) Premise for L1 adaptation: Considering a linear sys-
tem with unknown disturbance:

&= Ax + Bu+d,
y = Cu,

L1 adaptation proposes the predictor—adaptation laws

i=Ai+Bupes+d+L(y—2),
d=—T(&—y),

where L,I' are observer and adaptation gain matrices. A
low-pass filter with cutoff w, is applied to d to yield d before
control.

b) Our discrete centroidal-wrench implementation: We
treat the centroidal dynamics

M.%=u+d,

u=>_fi
i
and discretize via forward-Euler at At:
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with y; the measured centroidal acceleration. A first-order
discrete low-pass filter of cutoff w, is then applied:
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D. Integration with the Low-Level Force-based QP

We subtract the filtered disturbance dj, from the original
target:

Teorr = Tdes — dk7

and rerun the QP of the previous subsection with .
This dual-solve loop guarantees both accurate tracking of
the learned centroidal policy and rapid compensation for
unmodeled payloads.

E. Training Centroidal Policy

The centroidal policy is trained using the training pipeline
in [1]]. The reinforcement learning (RL) problem is represented
as a Markov Decision Process (MDP), which includes the state
space S, action space A, transition probability p(s¢+1 | S¢, at),
reward function 7 : S x A — R, and initial state distribution
po(so). We aim to learn a policy 7 : S — A that maximizes
the expected cumulative reward over an episode of length 7T,
which is defined as:

T
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t=0
The state space is designed to include the robot’s proprio-
ceptive state, as well as related information about the current
jump. The proprioceptive information includes the current
position and velocity of the robot base, as well as the foot
positions in the base frame. The task information includes the
current phase of the jump ® and the location of the target
landing position in egocentric frame. The action space includes
the desired stepping frequency f, the desired base velocity in
sagittal plane v, v, and vy, as well as the desired swing foot
residuals, which are specified to different modules in the low-
level controller. The reward function has 9 terms. At a high
level, the reward function ensures that the robot maintains
an upright pose, follows the desired contact schedule, and
lands close to goal. Table [l summarized the rewards and their
corresponding weights

TABLE I: Reward Terms and Corresponding Weights

Reward Term Weight
Upright 0.02
Base Height 0.01
Contact Consistency  0.008
Foot Slipping 0.032
Foot Clearance 0.008
Knee Contact 0.064
Stepping Frequency  0.008
Distance to Goal 0.016
Out-of-bound-action  0.01

E. Phase-based Gait Generator

The gait generator determines the desired contact state of
each leg (swing or stance) based on a pre-defined contact
sequence and the timing information from the centroidal
policy. To capture the cyclic nature of locomotion, we adopt a
phase-based gait representation, similar to prior works. The
gait is modulated by a phase variable ¢, which increases
monotonically from 0 to 27 in each locomotion cycle, and
wraps back to 0 to start the next cycle. The propagation of ¢
is controlled by the stepping frequency f, which is commanded
by the centroidal policy:

Gry1 = ¢ + 2 fAL 2

where At is the control timestep. The mapping from ¢
to the desired contact state is pre-defined. We adopt two



types of jumping gaits in this work, namely, bounding and
pronging, where bounding alternates between the front and
rear leg contacts, and pronking lands and lifts all legs at the
same time. Note that for the experiments we fixed the gait to
be pronking gait and tested the performance, our framework
allows adaptation to any gait and it can be changed by varying
the mapping from ¢ to the contact state.

IV. EVALUATION
A. Experiment Setup

The CAJun policy, as proposed in the original paper, was
trained and evaluated in simulation using NVIDIA Isaac Gym.
While Isaac Gym offers a high-fidelity environment for legged
locomotion, it is still only one approximation of the real
world. To investigate how well CAJun generalizes across
simulation environments—commonly referred to as the sim-
to-sim transfer gap—we attempted to deploy the same learned
policy in a different simulator: MuJoCo. This setting allows us
to isolate the impact of model mismatch without the additional
complexities of sim-to-real transfer.

To achieve this, we recreated the Gol robot model in
MuJoCo using an XML-based description. This involved care-
fully converting the URDF and configuration files used in
Isaac Gym into MuJoCo’s format, preserving joint geometries,
motor specifications, control modes, and physical constraints.
Special attention was given to torque limits and actuation
dynamics to match the conditions under which CAJun was
trained.

During this conversion, we identified a number of inertial
and physical parameters that were crucial to the dynamics
observed in the rollout. These included:

« Center of mass (COM) position (z,y, 2)
o Principal moments of inertia (I, Ty, 1)
« Payload mass capacity and distribution

While the CAJun paper does provide baseline values for
these parameters, the physical modeling in MuJoCo is sen-
sitive to even small discrepancies in these values. Based
on recommendations from the original paper and standard
modeling practices, we defined a feasible range of values
for each hyperparameter and conducted a parameter sweep
to assess the robustness of the policy under these variations.

What we found was that CAJun’s performance deteri-
orated rapidly when the inertial parameters deviated even
slightly from their nominal values. With the default parameters
from Isaac Gym, the robot frequently failed to complete full
rollouts in MuJoCo—often falling mid-jump or becoming
unstable before takeoff. This suggests that the policy is tightly
coupled to the original simulator’s dynamics and does not
generalize well to even minor discrepancies.

To study this effect more systematically, we first varied iner-
tial parameters while keeping all other settings fixed. As shown
in Figure [2] the distance traveled during the jump was highly
sensitive to changes in inertia and COM placement. Next,
we introduced payload variation while keeping the default
CAlJun inertial values. The results, summarized in Figure

were even more concerning—the robot could barely jump
with added payload, and many trials failed outright. We also
observe substantial variations in the robot’s performance when
the moment of inertia parameters (I, Iy, I..) are perturbed.
Even small deviations from the tuned values lead to noticeable
degradation in policy execution, often resulting in incomplete
rollouts or reduced travel distance. This trend is evident in
subfigures 2c| and 2d] These results highlight that the CAJun
policy is highly sensitive to inaccuracies in the inertial model
and lacks robustness to changes in mass distribution—an
essential requirement for real-world deployment.

Interestingly, once we manually tuned the inertial pa-
rameters—within physically realistic bounds—we observed
a significant improvement. The robot could complete more
rollouts, and the distance traveled under payload variation
increased noticeably. This suggests that with careful tuning,
the policy can be coerced into performing better, but it also
highlights a major limitation: CAJun does not adapt to
changes in dynamics. Its performance is highly sensitive to
the physical parameters of the simulation, indicating poor sim-
to-sim transferability and limited robustness under variable
payload conditions.

These observations form the basis for our next experiment,
where we incorporate an £, adaptive control layer to mitigate
these limitations.

B. Robusness to Model Uncertainties

We evaluated the robustness of our framework by varying
the base mass of the robot from 5.2kg to 12 Kg(2x the mass)
and comparing with the vanilla Cajun implementation.

Figure[3] illustrates the variation in distance traveled as a
function of the robot’s mass for two control strategies: a
standard QP-based controller (Vanilla QP) and a controller
augmented with an L1 adaptive component (L1 Adaptive).
The x-axis represents the mass in kilograms, ranging from
approximately 5.2 kg to 12.2 kg, while the y-axis indicates the
distance traveled in meters. We observe that the L1 Adaptive
controller consistently achieves higher travel distances com-
pared to the Vanilla QP controller across nearly the entire
mass range. Notably, the L1 Adaptive curve demonstrates both
greater amplitude and more pronounced peaks, indicating that
it is able to maintain and even enhance performance in the
presence of varying mass configurations. This robustness is
particularly evident in the higher mass regime (above 9kg),
where the Vanilla QP controller performance begins to degrade
sharply, falling below 2m of travel distance, while the L1
Adaptive controller maintains over 8 m.In the lower mass
range (5.5-7.5kg), although both controllers exhibit some
fluctuation, the L1 Adaptive controller still shows superior
consistency and higher average distance. The smoother yet
elevated performance curve of the L1 Adaptive controller
suggests that it can compensate for changes in dynamics
introduced by mass variation, likely due to its real-time model
adaptation capabilities. These results validate the efficacy of
incorporating L1 adaptive control for mass-invariant perfor-
mance and underscore the limitations of relying solely on
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fixed-model QP controllers in dynamic, uncertain environ-
ments.

C. Effect of Low-Pass Filtering on Disturbance Estimates
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Fig. 4: Low-Pass filtering of Uncertainity estimates

Figure@ above compares the raw disturbance estimates d
and their low-pass filtered counterparts d obtained through the
L, adaptive control architecture. The top row illustrates the
linear acceleration components (a, ay,a.), while the bottom
row depicts the angular acceleration components (o, ¢y, ;).
In both rows, it is evident that the raw estimates d contain high-
frequency variations, reflecting the rapidly changing dynamics
and model discrepancies encountered during motion. However,
the filtered estimates d, obtained via a low-pass filter intrinsic
to the Ly framework, exhibit significantly smoother profiles
across all axes.

This filtering plays a crucial role in enabling stable and
high-frequency adaptation. Without such smoothing, directly
injecting raw estimates into the control loop could lead
to undesirable oscillations or even instability. By isolating
the low-frequency components of the disturbances, the L,
controller ensures that only the structured, slowly varying
portions influence the adaptive term—allowing the control
loop to run at higher frequencies without sacrificing robustness
or stability. The consistency between d and d, especially in
preserving major trends while suppressing noise, validates the
efficacy of the L; filter. This design choice underpins the
core advantage of L; adaptive control: fast adaptation with
guaranteed robustness margins.

V. CONCLUSION

This work investigated the robustness limitations of the
CAJun framework—a hierarchical reinforcement learning-
based controller for continuous quadrupedal jumping—under
varying inertial parameters and payload conditions. While
CAlJun demonstrates impressive capabilities in learning dy-
namic, high-amplitude jumping behaviors, its reliance on a
low-level QP-based controller hinders generalization across
sim-to-sim transfer and payload variation scenarios. Through
a series of controlled experiments, we showed that even slight
mismatches in mass or moments of inertia can significantly
degrade the jumping performance, highlighting the sensitivity
of the existing policy to model inaccuracies. To address this
issue, we proposed augmenting the CAJun low-level controller
with an £, adaptive control law, designed to compensate
for unmodeled dynamics and parametric uncertainty in real
time. Our evaluation demonstrates that this modification signif-



icantly improves the stability and performance of the jumping
policy across a range of inertial variations, without requiring
re-training or additional tuning. The £;-augmented controller
enables more consistent foot placement, higher jump distance,
and better recovery across both simulated and transferred
domains, underscoring its potential as a plug-and-play module
for improving robustness in learned control frameworks. In
future work, we aim to extend this approach to full sim-to-real
transfer on hardware, and explore integrating adaptive estima-
tion directly into the learning loop for end-to-end robustness.
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